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1. Abstract 

Biochar has been reported to mitigate short-term methane emis- 

sions from paddy soil. At present, methane mitigation by biochar 

has primarily focused on the abundance and variations of metha- 

nogens and methanotrophs, and changes in their activity during 

methane production and consumption. However, long-term effects 

of biochar on methane mitigation from paddy soil remain contro- 

versial. In this review, we highlighted two existing opinions on 

the long-term methane mitigation effect upon biochar application. 

Combining the already explored mechanism of fresh biochar on 

methane mitigation from paddy soil and a novel discovery, that 

chemical reactivity of biochar can also stimulate anaerobic oxida- 

tion of methane, we analyzed the possible influences of biochar on 

methane production and consumption during its aging. 

Global warming is a major problem for humankind. Methane 

(CH4) is an important greenhouse gas, contributing up to 20% to 

global warming [1, 2, 3, 4]. Wetlands, including paddy fields, are 

sions [14-19]. Rice husk and maize straw have been reported to 

significantly reduce cumulative CH
4 
emissions as per meta-anal- 

ysis [11]. Ji (2020) [20] reported significantly reduced CH4 emis- 

sions using biochar in an incubation experiment conducted for 77 

days. Annual biochar application at a low rate (2.8 t ha-1) has also 

been reported to reduce CH4 emissions by 41% from paddy, on 

an average, over a span of five years [21]. Ecological benefits of 

biochar application have been widely recognized internationally. 

The ‘2019 Refinement to the 2006 IPCC Guidelines for National 

Greenhouse Gas Inventory’ newly added biochar to the calculation 

method of the annual change in the organic carbon storage of min- 

eral soil [22]. This suggests an international recognition of biochar 

for its ecological benefits. 

The mechanism by which biochar facilitates the mitigation of 

CH4 emissions from paddy soil was examined in terms of the ef- 

fect of biochar attributes on soil physicochemical and microbial 

structure. Generally, most of the explored mechanisms focus on 

an important source of CH4 emissions [5, 6, 7]. Flooded paddy soil 

contributed to 25% of the CH4 emissions from agricultural soil 

in 2017 [8]. Thus, reducing CH4 emissions from paddy fields is a 

major concern for alleviating global warming [9]. 

Biochar has been reported as a promising material for mitigating 

CH4 emissions from paddy soil [10, 11, 12]. Biochar is a black-col- 

ored product produced as a result of biomass pyrolysis under lim- 

ited oxygen [13]. It has been explored as an avenue for carbon 

sequestration, crop yield increase, and mitigation of CH emis- 

the influence of biochar on the activity changes in methanogens 

and methanotrophs during CH4 mitigation [23, 10, 12, 24, 19]. It 

is generally believed that biochar application in soil mainly pro- 

motes CH4 oxidation activity [23, 21, 24]. Biochar is porous and 

alkaline [25, 26] the former attribute provides a satisfactory habitat 

for methanotrophs to increase CH4-capturing ability and decrease 

Al3+ toxicity [20, 27]. The alkaline attribute of biochar usually in- 

creases soil pH to the optimum range for methanogens and meth- 

anotrophs [28]. Methanotrophs are more sensitive to soil pH, and 

therefore, CH4 oxidation activity substantially increases compared 
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to methanogenic activity [29]. Furthermore, the use of large parti- 

cle size biochar in soil increased soil aeration, and enhanced CH4 

oxidation activity. These findings revealed that biochar promoted 

aerobic CH4 oxidation activity. 

Recently, positive effects of biochar on anaerobic CH4 oxidation 

activity induced by the electronic accepting capacities of biochar 

have also been observed. Biochar can act as an electron acceptor 

as well as a donator, facilitating CH4 production and oxidation [30- 

32]. O-containing functional groups are the main entities respon- 

sible for the Electron Accepting Capacities (EAC) and Electron 

Donating Capacities (EDC) of biochar. Carbonyl and quinone de- 

termine the EAC properties of biochar. Zhang et al. (2019b) [32] 

reported that biochar stimulates the anaerobic oxidation CH4 due 

to the presence of C=O. Phenolic groups, quinone/hydroquinone 

moieties, and condensed aromatic (sub-) structures of biochar that 

allow electrons to be transferred across the conjugated p-electron 

systems are the main sources of EDC. Biochar with a high EDC 

value is beneficial for promoting methanogenic activity [33, 34]. 

Hence, EDC and EAC are also important factors in assessing the 

effect of biochar on CH4 mitigation in paddy soil. 

However, most studies that have demonstrated satisfactory results 

on CH4 mitigation from paddies, to date, have mainly focused on 

the CH4 mitigating effect in pot experiments and short-term exper- 

iments. In contrast, observations from field studies and long-term 

effects, especially after years of biochar aging, are lacking; in oth- 

surface area [17]. This facilitates the formation of smaller-sized 

soil aggregates compared to those produced when fresh biochar 

is applied [38]. These smaller soil aggregates hamper effective 

soil aeration. Hence, when large soil aggregates are fractured into 

smaller ones, the soil electric potential (Eh) would decreases, 

which may promote methanogenic activity. In addition, small soil 

aggregates present a much weaker barrier between microorgan- 

isms and organic matter [39], indirectly increasing substrate avail- 

ability for methanogens. During rice tillering and jointing growth 

stage, the ash content of biochar dissolves and leaches, leading to 

the gradual disappearance of the liming effect [40, 41]. Smaller 

biochar particles accelerate the biochar oxidation rate by exposing 

more biochar surfaces to oxidation by root secretions and oxides. 

Aged biochar is characterized by a higher number of O-containing 

functional groups such as carboxyl C, carbonyl C, and phenolic 

OH [13]. It has been reported that after four months of soil incuba- 

tion, biochar quinone content decreased [42]. As quinone mainly 

contributes to EAC, and phenolic OH is the main EDC source, 

changes in O-containing functional group changes inevitably af- 

fect methanogenic and CH4 oxidation processes [30, 32]. There- 

fore, to reveal the mechanism of the effect of aged biochar on CH4 

emissions, the key step is to explore the metabolic differences be- 

tween methanogens and methanotrophs based on changes in the 

physicochemical and electrochemical properties of the biochar. 

Hence, further research should focus on specifying biochar-spe- 

er words, the efficacy of biochar in mitigating CH4 

years of aging remains to be explored. 

emissions after cific properties that greatly impact methanogenic and CH4 oxida- 

tion processes. Studies have reported the effect of biochar particle 

Opinions on the effect of aged biochar in reducing CH4 emissions 
size on CH4 emission [43, 44], and the changes in biochar particle 

size during biochar aging are evident. However, few studies have 
from rice paddies differ. One opinion is that biochar, after four 

or six years of aging, still effectively mitigates CH4 emissions, 

as suggested by pot/incubation experiments [28, 12]. Some oth- 

er studies demonstrated that fresh biochar significantly decreased 

cumulative CH4 emissions from paddy fields but showed no sig- 

nificant difference from the control group after one year of aging 

[21, 35]. The main reason for this is that fresh biochar increased 

CH4 oxidation potential in the first year, while this effect decreased 

with its aging [21]. Spokas (2013) [36] also reported that biochar 

aging decreased the ability to promote methanotroph activity. To 

maximize the long-term CH4 mitigation effect of biochar from 

paddies, the mechanism underlying the mitigation effect of aged 

biochar needs to be further explored. 

Theoretically, the exploration of the mechanism should first focus 

on changes in biochar attributes. Agricultural activities, such as 

plowing and tillage, usually occur during the fallow period [17, 

37]. After years of rice growth, farming, and fallow cycles, biochar 

particles become smaller resulting in an increase in their exposed 

focused on changes in CH4 emissions from paddy soil based on 

biochar EAC/EDC and soil aggregate distribution; these may be 

proved to be other important factors that affect CH4 emissions in 

paddy soil. In addition, although pot and short-term field experi- 

ments are usually feasible operationally and economically results 

may not adequately reflect the scenario is under actual field con- 

ditions. Hence, long-term field positioning experiments, based on 

soil-plant-atmosphere ecosystems, must be conducted to obtain 

the most reliable results and CH4 mitigation mechanisms in paddy 

fields upon biochar application. 
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