

Journal of Rice Science

Review Article

MG2C 2.1: An Updated Web Service for Drawing Physical Map

Chao J*, Liu G and Sun Y

Department of Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.11 Keyuanjingsi Road, Laoshan District, Qingdao 266101, China

Volume 1 Issue 1 - 2019 Received Date: 23 Jul 2019 Accepted Date: 21 Aug 2019 Published Date: 26 Aug 2019

2. Keywords

MG2C; Web service; Gene map viewer; Bioinformatics

1. Abstract

Genes' physical map is very useful for gene analysis. Although there is some local software to view physical map, few web service is available. In 2015, we developed a web service - MG2C1.0. For last four years, we update the tool to 1.1, 2.0 and 2.1. As for June 2019, the effective use re-cord has reached more than 14,000 times.

The new version has some new features and functions as following: (1) more display styles for users to select; (2)more user-friendly interface web layout; (3) more input data size.

This tool is developed based on Perl language. It is free available use and is upgraded irregularly. To access the server: $http://mg2c.iask.in/mg2c_v2.1/$.

3. Background

Genetic maps over the years have act as important tools in areas of anchoring scaffold sequence to chromosomes, uncovering genetic mechanisms of agronomical traits in plants. The advent of nextgeneration sequencing has allowed for better genetic maps and physical maps. A physical map can visually display genes on chromosomes based on the position of each gene, which is also a useful tool for exploring genes' function. Simply rendering highresolution physical map is not easy for users. Map Chart [1] can produce high-resolution and feature-rich maps, and only runs on Windows; There is excel-based software like Map Draw [2], which template with Visual Basic (VB) macro code and modify these code is not easy. Here, we introduce MG2C, an simple web tool in Perl that produce for Scalable Vector Graphics (SVG) physical maps, can be run on any platform by internet browser. The tool has been updated from 1.0 to 2.1. As of June 2019, the effective use record has been more than 14,000 times.

4. Implementations

4.1. Input data

MG2C need two input file: file1 is about gene information, which contain five columns, such like gene id, start position of a gene, end position of a gene, chromosome id and gene color; file2 is

about chromosome information, which has two columns, such like chromosome id and chromosome length.

4.2. Usage

MG2C has 31 parameters with default values (**Table 1**), and you will get its description when your mouse flow onto them.

Table 1. Description and default values of parameters for latest version.

Parameters		Default values	Description
chromosome id	font	Times New Man	Font family of Chr id.
	size	12px	Font size of Chr id.
	color	black	Font color of Chr id.
SVG container	width	1000px	Width of SVG container.
	height	900px	Height of SVG container.
single chromo- some container	width	270px	Width of single Chr container.
	height	400px	Height of single Chr container.
	fill	none	Fill color of single Chr container.
	border-width	1px	Border width of single Chr container.
	border-color	none	Border color of single Chr container.
chromosome	width	10px	Width of single Chr.
	height	300px	Height of single Chr.
	fill	None	Fill color of single Chr.
	RX	14px	Rectangular round angle X of single Chr.
	RY	14px	Rectangular round angle Y of single Chr.
	border-width	1px	Border width of single Chr.
	border-color	black	Border color of single Chr.
gene lines	color	Black	Gene lines' color.
	width	0.5px	Gene lines' width.
	type	1	Gene lines' type.

*Corresponding Author (s): Jiangtao Chao, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No.11 Keyuanjingsi Road, Laoshan District, Qingdao 266101, China, E-mail: chaojiangtao@caas.cn

Volume 1 Issue 1-2019 Review Article

gene id	font	Times New Man	Font family of gene id.
	display_type	1	Gene display style, can be set 1 to 5.
	size	11px	Font size of gene id.
	color	black	Font color of gene id.
	margin	15px	Margins between gene id and Chr.
connection between gene ID and gene line	color	black	Color of link between gene id and gene.
	width	0.5px	Width of link between gene id and gene.
scale	units	bp	Units of gene map scale, bp or cM
	width	20px	Width of gene map scale
	position_X	20px	Position X of gene map scale
	N_tick mark	10	N mark lines of each unit.
	decimal place	0	Significant digit.

5. Results

The maps from two examples are shown in (**Figure 1**). The first example (**Figure 1A**) using MG2C early version to produce 22 *SIZHD* genes' physical map using default parameter values and add some new features by PPT. The second example(**Figure 1B**) using MG2C latest version to produce 10 SiLIM genes' physical map with chromosome fill with black and other parameters are default value.

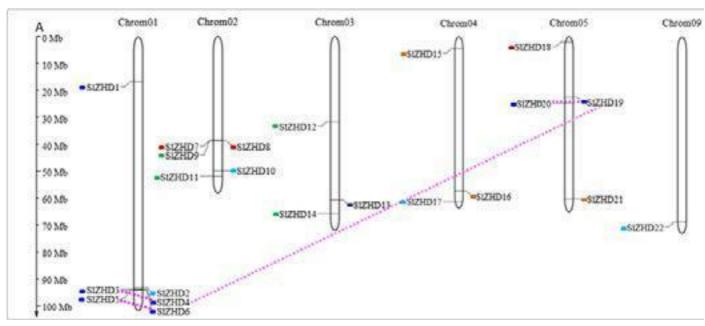
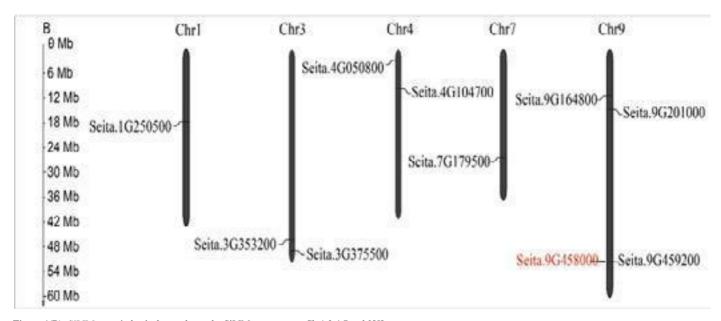



Figure 1(A): Tomato 22 SIZHD genes are widely distributed to the six chromosomes [4]

 $\textbf{Figure 1(B):} \ SiLIM \ genes' \ physical \ map \ shows \ the \ SiLIM \ genes \ are \ on \ Chr1,3,4,7 \ and \ 9[5]$

Volume 1 Issue 1-2019 Review Article

6. Conclusions

The MG2C is a free simple web tool for drawing physical map by mouse single click. Users can set parameters, input data and gain results in one page. In the case of elements overlapped, users can modify the height of SVG container, single chromosome container and chromosome correctly. In the future, we will continue to update the web tool.

7. Funding

This work was supported by the Science Foundation for Young Scholars of Tobacco Research Institute of Chinese Academy of Agricultural Sciences[2017B06]; This work was financially supported by the China Tobacco Genome Project [Grant Nos. 110201101009 (JY-05)].

References

- 1. Voorrips RE. Map Chart: Software for the graphical presentation of linkage maps and QTLs. J Hered. 2002; 93(1): 77-8.
- 2. Liu RH, Meng JL. Map Draw: a Microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan. 2003; 25(3): 317-21.
- 3. Chao JT. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi Chuan. 2015; 37(1):91-7.
- 4. Yang R. Genome-Wide Analysis of LIM Family Genes in Foxtail Mil-let (Setariaitalica L.) and Characterization of the Role of SiWLIM2b in Drought Tolerance. Int J MolSci. 2019; 20: 1303.
- 5. Khatun K. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato. Bmc Genomics. 2017; 18(1): 695.